Cheddington Combined School

Progression in Calculations Foundation Stage $\mathfrak{G e}$ Ke Stage 1

Parental Guidance Booklet

CONTENTS

PAGE	CONTENT
3	Introduction
5	The importance of counting
6	Addition
8	Subtraction
10	Multiplication
11	Division
13	Resourcestofelp

$\operatorname{INTRODUCTION}$

This bookle aims to explain how we, at Cheddington Combined School, teach your child different methods of calculation as they progress throughout the school. There are two booklets - one for Tey Stage One and one for Key stage two. The methods talked about in each bookle t include not only written calculations but also mentalmethods of calculating.

The methods may look different to what you are familiar with but they may be fow your child will be le arning to calculate at school. Hope fully, the explanations of the different methods will help you to understand how certain aspects of numeracy are approached in teaching today and enable to help your child as much as possible. Obviously, this is written as guidance for you, but if you are confused about anything your child is Le arning in the ir class you should approach the teacher or numeracy co-ordinator.

There is a strong emphasis on mentalcalculation strategies from foundation stage and it is not untilyour child progresses through Key Stage 2 that more formalmethods of written calculations are introduced. Your child will be building on the experience that they le arn year by year and by the end of Key Stage 2 when they move onto secondary education they will be well equipped to deal with numeracy at a figher level.

Ingeneral all calculations are written forizontally at first, untilcfildren decide which way to work them out
e.g.

$45+13=\quad$| | $\mathcal{N O T}$ vertic ally |
| :--- | :--- |
| | 45 |
| | $\underline{+13}$ |

Children are becoming more familiar with the words associated with the different number operations (addition, subtraction, division, multiplication) and this is something that we encourage you to continue with at home. This greatly helps children in being able to decipher word
problems and using and applying maths, an area in which there is a large empfas is now.
As your child progresses through Key Stage 1 and Key Stage 2 they will be taught different methods of addition, subtraction, multiplication and subtraction. Some methods they will like and understand straight away and others they may struggle with. Each method builds on another, but it is important to remember that they do not need to be an expert in every method. The aim is for children to find the easiest, quickest and most efficient way for them to workout an answer. This may not be the method you were taught!

Counting is important so that children le arn the order of numbers and where numbers are in relation to other numbers. Counting forwards and Gackwards sets a foundation for e arly addition and subtraction.
Counting in different steps sets a foundation for e arly multiplication and division.

Using a number track, number line or 100 square (see resources at the 6ack of this booklet for these) when counting, helps children to see and recognise the number they are saying and also to see where that number appears in relation to the other numbers.

It's important for children to know fow close 10 is to 7 and fow far 10 is away from 97.

$\underline{\mathcal{A D D I T I O N}}$

Foundation Stage / Reception

During foundation stage, your child will have plenty of opportunities to experience practical activities and discussions linked to counting. These will involve counting objects up to 10 (or more), estimating the number objects in front of them and thenchecking and finding one more than a number from 1 to 10. Your child will be hearing different vocabulary associated with addition and will begin to relate addition to combining two groups of objects.

Year 1
During ye ar 1 your cfild will begin to use the signs associated with addition and start to record mentalcalculations. They will extend their counting knowledge and begin to count on in ones, twos, fives and tens. Resources used to fielp will be cubes, numbered and blank number lines, number tracks and fundred squares. From early on we use a number line to record addition.
e.g.
$14+3$

B Children draw a straight line and then put the initial number in the correct place on the number line (14 in this case). Children are taught to atways move from left to right (i.e. the numbers increase as you move to the right along the number line).
B Children then count on three (one at a time) from 14, drawing in the arcs. They can then work out what number they fave landed on.

Year 2
$\mathcal{B} y$ the end of ge ar 2 it is hoped that all children will be able to recall addition facts for each number to at least 10, all pairs with totals of 20 (know as number bonds to 20) and all pairs with multiples of 10 with totals of up to 100. Mentalmethods of calculation are extended involving children being able to add mentally a single digit number of multiple of 10 to any two digit number.

Children will continue to use a number as in Year 1 but will begin to extend the number involved in a jump from beyond one at a time.
e. g.
$14+13$

B With this method children are encouraged to partition (they will have come across this when le arning about place value) 13 into 10 and 3.
B They then add 10 onto 14 followed by the 3
B Children need to be more secure on their place value before moving on from counting on one at a time.
\mathcal{D} uring ge ar 2 cfildren will also follow on this ide a of partition to carrying out addition using what we call informaljottings. Partitioning is a method used to carry out calculations mentally so it is with this as a bas is that we jot'down workings out. This is purely a way for children to show their workings out it is not writing down a method more formally - this is approached in Key Stage 2.
e.g.

During 位y Stage One children will also be encouraged to think about number sentences and to work out an unknown:
e.g.

凸 $+8=12$

$\underline{S U B T R A C T I O N}$

Foundation Stage / Reception

As with addition the emphasis is on practical activities and discussion. Children will be encouraged to find one less than a number from 10 and be introduced to different vocabulary linked to subtraction.

Ye ar 1
During Ye ar 1 your child will begin to use the signs related to subtraction and begin to understand subtraction as take away and finding a difference by counting up. They will use practic al and informal written methods, particularly focussing on number lines, number tracks and 100 squares.
e.g. $15-3=12$

B Childrendraw the number line and place 15 at the right fand side. They work backwards along the numberline showing that the number gets smaller
B They count 6ackin ones
e.g. find the difference between 3 and 7

B Children draw the number line and place 3 and 7 in the correct order on the number line.
B They then count in ones from 3 up to seven, drawing in the arcs.

Year 2

During year 2 both the methods used in gear 1 are extended into making larger jumps on a number line. There is an emphasis on mental strategies for working out subtraction. Children are taught not only to use a number line by counting backwards (example \mathcal{A} below) but also forwards (example B) for subtraction. This method of counting up from the smaller to the larger number is often used when finding the difference between two numbers, but it can be used for any subtraction calculation.

Example \mathcal{A}
$74-27=47$

Example \mathcal{B}

74-27 (interpreted as find the difference)

B After drawing the number line place 74 on the right fand side.
B Childrenthen count Gack in manageable steps (multiples of 10 , 6ack to nearest 10)

B Draw the 6lank numberline and then place 27 and 74 in the correct place
B Then work from the 27 up to the 72. Add up to the nearest 10 (30), then in multiples of ten (up to 70) and then the last jump up to 74 .
ß This is in manageable steps.

During ge ar 2 your child will also start to write down informalmethods which link to working out answers mentally. This method as well as the number line method will be built on in Key Stage 2.

$$
\begin{aligned}
36-24 & =36-20 \cdot 4 \\
& =16 \cdot 4 \\
& =12
\end{aligned}
$$

ß Thinking about partitioning split up the 24 into 20 and 4
B Take away the 20, then take away the 4

$\underline{M \mathcal{L L T} I P L I C A T I O \mathcal{N}}$

Reception / Foundation Stage

Working practically your child will gain experience in doubling, counting in $2 s$ and $10 s$, putting objects into groups and will begin to become familiar with the appropriate language.

Year 1
Your child will continue to count in $2 s, 5 s$ and $10 s$ and gain experience in the appropriate language. They will start to look at multiplication as arrays and understand that it does not matter which way round the numbers are.

or

$4 \times 5=20$
$5 x 4=20$

Year 2

Your child will continue to look at multiplication as arrays and also begin to understand multiplication as repeated addition, carrying out calculations on a number line.
$4 x 5=20$
\qquad
$\begin{array}{lllll}0 & 5 & 10 & 15 & 20\end{array}$

B Draw the Glanknumber line with 0 at the Geginning.
B Count on ingroups of 5 four times

$\underline{D I V I S I O N}$

Reception / Foundation Stage

Your child will begin to share objects practically into equalgroups and then count fow many in each group.

Year 1
Your child will solve practical problems that involve sharing into equal groups. Division is a fard concept for cfildren to understand as there are two ways of looking at the problem. During Year 1 both approaches will be looked at by your child with the emphasis moving towards example 2 as this links to more formalmethods used later on in Key S tage 1 and into Key Stage 2.

12 divided by 2 (12 sfared into 2 groups)

12 divided by 2 (12 shared into groups of 2)

It is important for children to understand as early as possible the ide a of grouping rather than sharing. As mentioned, this is an extremely difficult concept to come to grasps with 6ut this will be worked on each year as your child progresses throughout the school.

Year 2

During Year 2 division is represented as repeated addition (groupings).. Your child will use practical and informal written methods on a number line in order to calculate answers.
$12 \div 2=6$

RES O URCES

Hundred Square

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Number Line

Multiplication Square

x	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

This booklet aims to explain how we, at Cheddington Combined S school, te achy your child different methods of calculation as they progress throughout Foundation Stage and Key Stage One

Produced by REllis
Cheddington Combined School
2007

